SemiWiki: RAL, Lint and VHDL-2018

Date: Jun 11, 2018
Type: In the News

by Alex Tan


Functional verification is a very effort intensive and heuristic process which aims at confirming that system functionalities are meeting the given specifications. While pushing cycle-time improvement on the back-end part of this process is closely tied to the compute-box selection (CPU speed, memory capacity, parallelism option), the front-end involves many painstaking setup preparation and coding. As such, any automation and incremental checks on the quality of work for both the design and the embedded codes used for its verification should help prevent unnecessary iterations and shorten the overall front-end setup time.


UVM Register Generator


Register Abstraction Layer (RAL) was part of the Universal Verification Methodology (UVM) supported features introduced in 2011. It provides a high-level abstraction for manipulating the content of registers in your design. All of the addresses and bit fields can get replaced with human readable names. RAL attempts to mirror the values of the design registers in the testbench, so one could use the register model to access those registers. A RAL model comprises fields grouped into registers, which along with memories can be grouped into blocks or eventually grouped into systems.


Aldec’s Riviera-PRO™ verification platform enables testbench productivity, reusability, and automation by combining the high-performance simulation engine, advanced debugging capabilities at different levels of abstraction. In its latest release (2018.02), it introduces RAL support.


For the rest of this article, please visit SemiWiki.

Ask Us a Question
Ask Us a Question
Captcha ImageReload Captcha
Incorrect data entered.
Thank you! Your question has been submitted. Please allow 1-3 business days for someone to respond to your question.
Internal error occurred. Your question was not submitted. Please contact us using Feedback form.
We use cookies to ensure we give you the best user experience and to provide you with content we believe will be of relevance to you. If you continue to use our site, you consent to our use of cookies. A detailed overview on the use of cookies and other website information is located in our Privacy Policy.